Design Specs for Creating a New Module

Overview

The Presentation Manager (hereafter referred to as the “PM”) is a Netscape 4.X+ or IE 4.X+ accessible program on a Windows 95, 98, or NT platform with the Java 1.2.2 plug-in. To properly view the PM, the display settings must be greater than 800x600. The PM's stated purpose is to organize tutorials on some subject. These tutorials, or modules as they will be referred to in this document, are HTML pages linked together as web pages.

The PM has the following functionality:

· It dynamically displays a listing of loaded modules, each with a short text describing what it covers. This list provides a link to the opening page of these modules.

· It loads and alphabetizes all glossary words from each module to be accessed at any time. Glossary words have a link to the first page of the module from which they come and a definition for the word.

· It loads and alphabetizes all keywords from each module to be accessed at any time. Each keyword has a link to the specific page where the word is embellished.

These functions are always available by clicking on "Nettie the Octopus."

In addition, each module has links to its own glossary that will open the glossary to the selected word in a new window.

This specification has two parts:

1) An overview of the program showing the Directory/File Tree and a brief explanation of each part.

2) Instructions on the necessities of creating new Modules. This should show how to seamlessly add a new module that will implement all of the functions of the PM.

Table of Contents

Design Specs for Creating a New Module
1
Overview
1
Table of Contents
2
The Directory/File Tree
3
Modules
4
modules.txt spec
5
index.htm and pageX.htm specs
6
about.htm spec
7
glossary.htm spec
8
keywords.htm spec
10

The Directory/File Tree

/Presentation_Manager
- directory that holds the whole program.

index.htm

- loads the frameset.

code.jar

- the code for all of the PM’s applets. See below.

Splash.htm

- the main menu frame.

top_frame.htm

- the title frame.

corner_frame.htm
- the corner frame. This frame houses a permanent link to the main menu and keeps alive the applet with the full glossary and keyword.

aboutpm.htm
- a simple explanation on how to use the PM. Links to the aboutPM module.

/aboutPM
- a default module teaching about the PM. Needs to be implemented.
/content

- folder to hold content pages about the PM. Needs to be developed.

/modules
- holds all of the individual modules and files that format things for the PM.

index.htm

- a redirect back to the PM – should not be used. See documentation for index.htm in Modules.

modules.txt

- a text listing of the modules. See below.

about.htm

- the formatting for the about files. See below.

glossary.htm

- the formatting for the glossary files. See below.

keywords.htm

- the formatting for the keyword files. See below.

/ModuleName

- whatever name you wish to have for your module.

index.htm

- a redirect back to the PM – should not be used. See below.

about.htm

- a short description of the module. See below.

glossary.htm

- the listing of glossary words for the module. See below.

keywords.htm

- the listing of the keywords and their links. See below.

/content

- holds all of the actual content of a module.

index.htm
- the page the PM will load to start the module. See below.

pageX.htm
- all of the individual pages named whatever you wish. See below.

top_frame.htm

- the title bar for the module.

moduleName.css
- the cascading style sheet (if used) for the module.

/images

- images and media folders are for formatting

image.X
purposes only. It is good form to

/media
separate them from the normal content.
media.X
Regular = Directory
Italic = file name

Modules

Each individual module is customizable to be formatted in any way that you see fit. There are only a few things that must be implemented for the PM to work with it. There must be a content folder with an index.htm file inside of it. This will be the first file that is called from the PM, but a redirect can be sent from this file to any other. The organization, feel, and content of the module are up to the writer. The other requirement is to keep the same frameset as is set in the PM - this ensures that "Nettie", the applet holding the consolidated glossary and keyword lists, does not die and does not need to be reloaded.

To use the full functionality of the PM there should be three other files created: the glossary.htm, about.htm, and keywords.htm files.

To create a new module, you only need to follow these specifications and add the name of the folder in which the module is held (the name of the module) to the modules.txt file. Each module should be completely self contained; there should be no absolute references; the module should be able to be transported from one location to another without loss of functionality.

modules.txt spec

modules/modules.txt holds the names of the modules' folders. They must have exactly the same spelling as the folder, otherwise the PM will not access the module properly. There also must be a blank line after the last entry – this is so that the listing of the modules with their about files on the main menu will be properly formatted. To add a new module, add the module directory name to this file.

Example:

Module1

Module2

Module3

Notice the blank line after the last module. Whenever a new module is created and integrated, this file needs to be updated.

The order in module.txt is the order in which the modules will be presented in the PM. If you wish to reorder the modules, you may do so in modifying this file.

index.htm and pageX.htm specs

Within the content directory of a module there must be an index.htm file. The PM uses this page when to load the module. Once the index file has been loaded, you may link to any page of any name in any order you wish.

The initial frameset has three frames: the corner frame of Nettie, the top frame that is to hold a modules title, and the main frame where content is to appear. To change the title frame upon loading a module, you may use the following JavaScript in the body tag of your index file.

<body onLoad="parent.frames[1].location=’top_frame.htm';">

Upon loading a file, this script will load top_frame.htm into the second frame of the frameset (parent.frames[X] starts with 0 as the first frame loaded, 1 as the second, etc.). Then within the content directory, just format a file top_frame.htm to be the title of the module.

Within the modules directory and within each specific module's directory it is recommended to have an index.htm file. This file is to protect the data within those directories. No one should actually get to those files, but if something unexpected occurs, a safeguard should be implemented to protect the files in those directories. The readied solution is to redirect the browser back to the PM. The code for this redirect is as follows.

<html>

<head>

<title>Untitled Document</title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">

<meta http-equiv=refresh content="0;URL=../../index.htm">

</head>

<body bgcolor="#FFFFFF">

</body>

</html>

The important line of code is the one that says refresh content=”0;URL=../../index.htm” (which is changed to ../index.htm in the modules directory). This tells the browser to go up two directories (or up one directory) and find the index.htm file. In this way if a person somehow accesses the wrong directory, he or she will end up back in the PM.

The full header of the normal pages within a module (the pageX.htm files) may be similar to this:

<head>

<title>Title of Page</title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">

<!-- This javaScript function allows calls to the glossary and will ensure the glossary will be on top. Use with this call:

[glossary word] -->

<script language="JavaScript">

<!--

function goToWord(glossaryWord) {

 var newWind = window.open(glossaryWord, "Glossary", "height=100,width=500,scrollbars=yes,resizable=yes");

 newWind.focus(); }

//-->

</script>

</head>

This includes the JavaScript function to call the module level version of the glossary.

about.htm spec

Within the main folder of each module is an about file that provides a short description of what the module covers. This file should have very little formatting and does not need headers. It does need a starting and ending <!--about--> tag around the portion of the about file that is to be displayed.

Example:

<!--about-->

<P>

This module will take you through the basics of assembling a PC from scratch and installing an operating system.

</P>

<!--about-->

This is all that is necessary, but you may add more if you wish. Just be very minimalistic about the formatting between the “<!--about-->” tags. Also, it is very important to have the tags on separate lines from the rest of the file, as this is how the parser will look for it.

glossary.htm spec

Within the main folder for each module should be a glossary file that provides the definition of important words within the module. The first use of this file is that the PM strips out the words and definitions, and then stores them for use in the main applet. The second use of the glossary file is within a module itself. A link is made within the pages of the module to open a second window with the glossary word in sight. This requires having an anchor for each word in the glossary. It also requires that the glossary.htm file within the module be nicely formatted.

Example:

<HTML>

<HEAD>

<TITLE>Glossary Workshop #1</TITLE>

</HEAD>

<BODY LINK="#0000ff">

<P>Network Services Laboratory Glossary</P>

<DIR>

<entry>

<term>BSD</term>

<P>(Berkeley Systems Design) The base set of code that has developed into FreeBSD,

 OpenBSD, NetBSD and BSDI. These are all UNIX based Operation Systems.</P>

</entry>

<entry>

<term>Linux</term>

<P>A UNIX-like operating system. The OS's kernel was and is developed by Linus

 Torvalds and Alan Cox along with a large cast of global developers. In addition,

 the rest of the system and user level applications are freely available under

 GNU or GNU-like licenses. The OS runs on a large number of platforms. </P>

</entry>

<entry>

<term>Solaris</term>

<P>Sun Microsystems UNIX operating system for Sparc and i386 platforms.</P>

</entry>

 </dir>

</BODY>

</HTML>

Notes on creating the glossary in order of the file.

1) This file is a fully fleshed out HTML file with header, body, and formatting.

2) Each <entry> tag must be on the start of its own line. The parser for the PM will not see the tag unless it is on the start of a line.

3) On the line below the <entry> tag, each entry needs to have an anchor attached to it(an tag). This is so when the module accesses the glossary file, it can scroll down to the proper place to display the word.

4) The <term> and </term> must be on the same line as the anchor. The parser will look for the term there.

5) The definition must start on the line under the anchor. The parser, after stripping out the term will not look at anything else on that line. It will start at the beginning of the next line and start printing out the definition.

6) The </entry> tag must be on its own line. The parser will cease collecting a definition only when it sees this tag at the beginning of a line.

For the glossary words to be properly accessed within a module, a simple JavaScript function needs to be put in the header of every module page that points to a glossary word. A function that works is:

<script language="JavaScript">

<!--

function goToWord(glossaryWord) {

 var newWind = window.open(glossaryWord, "Glossary", "height=100,width=500,scrollbars=yes,resizable=yes");

 newWind.focus();

}

//-->

</script>

This script takes a [filename]#[anchor name] as an argument, opens a new window that is the given size and has scrollbars and can be resized, and puts this window on top of the main browser window (gives the new window the focus).

To then call this function within the body of a web page, use the following template.

After you power on your computer, you should see a text message displaying

your BIOS.

This function sets a hyperlink on the word BIOS to ../glossary.htm#bios. The ‘href = “”’ and the ‘return false’ statements are so that clicking on the link does not change the position on the page. The ‘../glossary.htm’ portion is needed because the glossary file is located one directory above the content page. The ‘#bios’ is referring to an anchor specified within the glossary file of ‘bios’.

keywords.htm spec

Within the main folder of each module should be a keywords file that provides links to pages. The keyword should represent an important concept that is illustrated in great detail on the page to which it is linked. There are two required tags within each line. The first is the tag. This defines the word as a hyperlink and tells the browser where to go. This may be a page reference, or may be reference to an anchor within a page.

Each reference is of the style content/pageX.htm. The reason for having the reference include the content directory was for testing purposes. To test the links, pull up on a browser keywords.htm and click on all of the links. Any link that does not correctly pull up the appropriate page is not coded correctly.

The second required tag within each line is <word>…</word>. This allows the PM to know what the keyword term is, including spaces.

The keywords.htm file should not have a header or even be characterized as an <HTML> file. The parser will start reading from the first line. It also needs one blank line at the end of the file

Example:

<modkey><p><word>PC Assembly</word></p></modkey>

<modkey><p><word>Operating System</word></p></modkey>

<p><word>Operating System</word></p>

<p><word>CPU (definition)</word></p>

<p><word>CPU (assembly)</word></p>

<p><word>Cache</word></p>

<p><word>Motherboard (definition)</word></p>

<p><word>Motherboard (assembly)</word></p>

Note that "Motherboard" has an anchor attached to the link; this is permitted.

PM Loading & Presentation. (See Notebook)

Individual Modules.

